Abstract

Computer-aided diagnosis (CAD) of pulmonary nodules is an effective approach for early detection of lung cancers, and pulmonary nodule classification is one of the key issues in the CAD system. However, CAD has the problems of low accuracy and high false-positive rate (FPR) on pulmonary nodule classification. To solve these problems, a novel method using intelligent immune clonal selection and classification algorithm is proposed and developed in this work. First, according to the mechanism and characteristics of chaotic motion with a logistic mapping, the proposed method utilizes the characteristics of chaotic motion and selects the control factor of the optimal chaotic state, to generate an initial population with randomness and ergodicity. The singleness problem of the initial population of the immune algorithm was solved by the proposed method. Second, considering on the characteristics of Gaussian mutation operator (GMO) with a small scale, and Cauchy mutation operator (CMO) with a big scale, an intelligent mutation strategy is developed, and a novel control factor of the mutation is designed. Therefore, a Gauss-Cauchy hybrid mutation operator is designed. Ultimately, in this study, the intelligent immune clonal optimization algorithm is proposed and developed for pulmonary nodule classification. To verify its accuracy, the proposed method was used to analyze 90 CT scans with 652 nodules. The experimental results revealed that the proposed method had an accuracy of 97.87% and produced 1.52 false positives per scan (FPs/scan), indicating that the proposed method has high accuracy and low FPR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.