Abstract

Computed tomography (CT) screening is an effective way for early detection of lung cancer in order to improve the survival rate of such a deadly disease. For more than two decades, image processing techniques such as nodule detection, segmentation, and classification have been extensively studied to assist physicians in identifying nodules from hundreds of CT slices to measure shapes and HU distributions of nodules automatically and to distinguish their malignancy. Thanks to new parallel computation, multi-layer convolution, nonlinear pooling operation, and the big data learning strategy, recent development of deep-learning algorithms has shown great progress in lung nodule screening and computer-assisted diagnosis (CADx) applications due to their high sensitivity and low false positive rates. This paper presents a survey of state-of-the-art deep-learning-based lung nodule screening and analysis techniques focusing on their performance and clinical applications, aiming to help better understand the current performance, the limitation, and the future trends of lung nodule analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.