Abstract
This is the second paper in a series of two that describe our research in intelligent energy management in a hybrid electric vehicle (HEV). In the first paper, we presented the machine-learning framework ML_EMO_HEV, which was developed for learning the knowledge about energy optimization in an HEV. The framework consists of machine-learning algorithms for predicting driving environments and generating the optimal power split of the HEV system for a given driving environment. In this paper, we present the following three online intelligent energy controllers: 1) IEC_HEV_SISE; 2) IEC_HEV_MISE ; and 3) IEC_HEV_MIME. All three online intelligent energy controllers were trained within the machine-learning framework ML_EMO_HEV to generate the best combination of engine power and battery power in real time such that the total fuel consumption over the whole driving cycle is minimized while still meeting the driver's demand and the system constraints, including engine, motor, battery, and generator operation limits. The three online controllers were integrated into the Ford Escape hybrid vehicle model for online performance evaluation. Based on their performances on ten test drive cycles provided by the Powertrain Systems Analysis Toolkit library, we can conclude that the roadway type and traffic congestion level specific machine learning of optimal energy management is effective for in-vehicle energy control. The best controller, IEC_HEV_MISE, trained with the optimal power split generated by the DP optimization algorithm with multiple initial SOC points and single ending point, can provide fuel savings ranging from 5% to 19%. Together, these two papers cover the innovative technologies for modeling power flow, mathematical background of optimization in energy management, and machine-learning algorithms for generating intelligent energy controllers for quasioptimal energy flow in a power-split HEV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.