Abstract

In this article, a novel, learning-based method for accurate location of faults in multiterminal direct current (MTdc) networks is proposed. By assessing the dc circuit breaker currents during the fault clearance process, a pattern recognition approach is adopted from which the fault location is estimated. The implementation of the algorithm is allocated into three main stages, where similarity coefficients and weighted averaging functions (incorporating exponential kernels) are utilized. For the proposed algorithm, only a short-time window of data (equal to 6 ms) is required. The performance of the proposed method is assessed through detailed transient simulation using verified MATLAB/Simulink models. Training patterns have been retrieved by applying a series of different faults within an MTdc network. Simulation and experimental results revealed that the proposed scheme, first, can reliably determine the type of fault, second, can accurately estimate the fault location (including the cases of highly resistive faults), and, third, is practically feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.