Abstract

Hydraulic piston pump is known as one of the most critical parts in a typical hydraulic transmission system. It is imperative to probe into an accurate fault diagnosis method to guarantee the stability and reliability of the system. Due to the shortcomings of traditional methods, the development of artificial intelligence enlightens the intensive exploration for machinery fault diagnosis. In this research, a normalized convolutional neural network (NCNN) framework with batch normalization strategy is developed for feature extraction and fault identification. First, the batch normalization technology is introduced in the modeling to resolve the change of data distribution. Second, inspired by the intelligent algorithms, Bayesian algorithm is employed to automatically tune the model hyperparameters. The improved model is named BNCNN. Third, BNCNN is used for fault diagnosis based on synchrosqueesed wavelet transform. The experiments in a hydraulic piston pump are employed for the demonstration of the method. Moreover, the superior performance of the proposed method is validated by the contrastive analysis. The results reveal that BNCNN can accurately and steadily complete the fault classification of hydraulic pump.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.