Abstract
Effective fault detection, classification, and localization are vital for smart grid self-healing and fault mitigation. Deep learning has the capability to autonomously extract fault characteristics and discern fault categories from the three-phase raw of voltage and current signals. With the rise of distributed generators, conventional relaying devices face challenges in managing dynamic fault currents. Various deep neural network algorithms have been proposed for fault detection, classification, and location. This study introduces innovative fault detection methods using Artificial Neural Networks (ANNs) and one-dimension Convolution Neural Networks (1D-CNNs). Leveraging sensor data such as voltage and current measurements, our approach outperforms contemporary methods in terms of accuracy and efficiency. Results in the IEEE 6-bus system showcase impressive accuracy rates: 99.99%, 99.98% for identifying faulty lines, 99.75%, 99.99% for fault classification, and 98.25%, 96.85% for fault location for ANN and 1D-CNN, respectively. Deep learning emerges as a promising tool for enhancing fault detection and classification within smart grids, offering significant performance improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.