Abstract

Process monitoring is considered to be one of the most important problems in process systems engineering, which can be benefited significantly from deep learning techniques. In this paper, deep neural networks are applied to the problem of fault detection and classification to illustrate their capability. First, the fault detection and classification problems are formulated as neural network based classification problems. Then, neural networks are trained to perform fault detection, and the effects of two hyperparameters (number of hidden layers and number of neurons in the last hidden layer) and data augmentation on the performance of neural networks are examined. Fault classification problem is also tackled using neural networks with data augmentation. Finally, the results obtained from deep neural networks are compared with other data-driven methods to illustrate the advantages of deep neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.