Abstract

A nanofluid with effective energy dissipation capability is developed with functionalized carbon nanotubes (CNTs) and nonwetting high surface tension liquid. Both CF<sub>4</sub> plasma treating and fluorosilane grafting methods were performed to modify the properties of tube inner walls. By adjusting the plasma treating pressure, time and the chain length of the grafted fluorosilane, the functionalized CNTs based nanofluids could achieve different energy dissipation capabilities. From the XPS, TGA and TEM test results, it is found that the tube inner surface treating rate mainly determines this energy dissipation capability. Among the functionalized CNTs, the CF<sub>4</sub> plasma treated SWCNTs achieve the highest dissipation capability, which is mainly due to the small pore diameter and high inner surface treating rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.