Abstract
We are in the midst of an AI revolution. Three primary disruptive changes set off this revolution: 1) increase in compute power, mobile internet, and advances in deep learning. The next decade is expected to be about the proliferation of Internet-of-Things (IoT) devices and sensors, which will generate exponentially larger amounts of data to reason over and pave the way for ambient computing. This will also give rise to new forms of interaction patterns with these systems. Users will have to interact with these systems under increasingly richer context and in real-time. Conversational AI has a critical role to play in this revolution, but only if it delivers on its promise of enabling natural, frictionless, and personalized interactions in any context the user is in, while hiding the complexity of these systems through ambient intelligence. However, current commercial conversational AI systems are trained primarily with a supervised learning paradigm, which is difficult, if not impossible, to scale by manually annotating data for increasingly complex sets of contextual conditions. Inherent ambiguity in natural language further complicates the problem. We need to devise new forms of learning paradigms and frameworks that will scale to this complexity. In this talk, we present some early steps we are taking with Alexa, Amazon's Conversational AI system, to move from supervised learning to self-learning methods, where the AI relies on customer interactions for supervision in our journey to ambient intelligence. Date: 14 July 2022.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have