Abstract

This paper is concerned with intelligent control for grasping and manipulation of an object by multi-fingered robot hands with rigid or soft hemispheric finger ends that induce rolling contacts with the object. Even in the case of 2D motion like pinching by means of a pair of multi-degrees of freedom robot fingers, there arises an interesting family of Lagrange’s equations of motion with many geometric constraints, which are under-actuated, redundant, and non-holonomic in some sense. Regardless of underactuation of dynamics, it is possible to find a class of sensory feedback signals that realize secure grasp of an object together with control of object orientation. In regard to the secure grasping, a problem of force/torque closure for 2D objects in a dynamic sense plays a crucial role. It is shown that proposed sensory feedback signals satisfying the dynamic force/torque closure can be constructed without knowing object kinematic parameters and location of the mass center. To prove the convergence of motion of the overall fingers–object system under the circumstance of redundancy of joints, new concepts called “stability on a manifold” and “asymptotic stability on a manifold” are introduced. Based on the results found for intelligent control of robotic hands, the last two sections attempt to discuss why human multi-fingered hands can become so dexterous at grasping and object manipulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call