Abstract

Over the past decade, the advancement of digital technology has significantly enhanced operations management in complex cyber-physical systems (CPSs), especially in the production and manufacturing sectors. In such systems, the physical and cyber spaces are generally connected through sensors, networking, and control actions. With the surge in available real-time data, automation and intelligence have become increasingly prevalent. However, full automation and sophisticated intelligence often remain challenging to achieve in real-world CPSs. Currently, many practical tasks in CPSs are best tackled through the integration of human cognitive skills with autonomous systems, highlighting the indispensable role that humans play in these settings. In this study, we present a framework for real-time decision-making and control in complex cyber-physical-human systems. The framework consists of three main modules: intelligent data processing, intelligent decision-making and control, and human-computer interaction. It is designed to provide a practical and implementable framework for supporting real-time decision-making and control in cyber-physical-human system applications. To demonstrate the applicability of the framework, we build a comprehensive decision support tool to manage several important real-time decision-making and control tasks at a container terminal. The tool is seamlessly integrated into the main operating system of the container terminal and aids decision-makers in making optimal decisions and generating appropriate control actions. The effectiveness of the tool is confirmed by observed improvements in several key operational efficiency indicators at the container terminal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call