Abstract
In this paper, a fuzzy logic-based control system is proposed, which lays emphasis on the functionality of the system rather than developing a mathematical model. Applied to a climbing robot, it can achieve precise motion control along with power consumption minimization and produce versatile behaviors based effective computational method in behavior-based control paradigm to implement robot behaviors. Experimental results prove the validity of the proposed methods. The proposed fuzzy logic-based control scheme is capable to automatically change the stickiness of hands and feet based on surface slope of unsupervised systems, thus keeping the control of the motion at a predefined stable level. The effectiveness of the proposed approach is demonstrated through experimental results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have