Abstract
The use of Computer-Aided Diagnosis in dermatology raises the necessity of integrating Content-Based Image Retrieval (CBIR) technologies. The latter could be helpful to untrained users as a decision support system for skin lesion diagnosis. However, classical CBIR systems perform poorly due to semantic gap. To alleviate this problem, we propose in this paper an intelligent Content-Based Dermoscopic Image Retrieval (CBDIR) system with Relevance Feedback (RF) for melanoma diagnosis that exhibits: efficient and accurate image retrieval as well as visual features extraction that is independent of any specific diagnostic method. After submitting a query image, the proposed system uses linear kernel-based active SVM, combined with histogram intersection-based similarity measure to retrieve the K most similar skin lesion images. The dominant (melanoma, benign) class in this set will be identified as the image query diagnosis. Extensive experiments conducted on our system using a 1097 image database show that the proposed scheme is more effective than CBDIR without the assistance of RF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.