Abstract
High-frequency signals like vibration and acoustic emission are crucial for condition monitoring, but their high sampling rates challenge data acquisition, especially for online monitoring. Our research developed a novel method for condition identification in undersampled signals using a modified convolutional neural network integrated with a signal enhancement approach. A frequency-domain filtering is applied to suppress similar sidebands and obtain more discriminative features of different conditions, followed by an interpolation-based upsampling in the time domain to restore the signal length and strengthen the low-frequency harmonic information. Enhanced signals are converted into two-dimensional grayscale images for neural network analysis. Tested on bearing datasets and real-world data from regenerative thermal oxidizer lift valve leakage, our method effectively extracts features from low-frequency signals, achieving over 95% fault identification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.