Abstract
We describe in this paper a new method for adaptive model-based control of robotic dynamic systems using a new hybrid fuzzy-neural approach. Intelligent control of robotic systems is a difficult problem because the dynamics of these systems is highly nonlinear. We describe an intelligent system for controlling robot manipulators to illustrate our fuzzy-neural hybrid approach for adaptive control. We use a new fuzzy inference system for reasoning with multiple differential equations for model selection based on the relevant parameters for the problem. In this case, the fractal dimension of a time series of measured values of the variables is used as a selection parameter. We use neural networks for identification and control of robotic dynamic systems. We also compare our hybrid fuzzy-neural approach with conventional fuzzy control to show the advantages of the proposed method for control.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have