Abstract

Condition-based maintenance (CBM) is a maintenance strategy that reduces equipment downtime, production loss, and maintenance cost based on changes in equipment condition (e.g., changes in vibration, changes in power usage, changes in operating performance, changes in temperatures, changes in noise levels, changes in chemical composition, increase in debris content and changes in volume of material). In this study, we present the newly developed condition monitoring model (CMM) based on Bayesian decision theory, which takes vibration signals from the equipment, and classifies them to either normal or abnormal condition. Using conditional risk function, the equipment condition can be classified to either normal or abnormal condition. The conditional risk function is calculated based on loss table and the class posterior probabilities. The developed model can efficiently avoid unnecessary maintenance and make timely actions through analysing the received vibration signals from the equipment. An illustrative example is demonstrated to present the application of the model. Also, the results derived from CMM programme coded in Visual Basic are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.