Abstract

Protein splicing is a posttranslational processing event that releases an internal protein sequence from a protein precursor. During the splicing process the internal protein sequence, termed an intein, embedded in the protein precursor self-catalyzes its excision and the ligation of the flanking protein regions, termed exteins. The dissection of the splicing pathway, which involves the precise cleavage and formation of peptide bonds, and the identification of key catalytic residues at the splice junctions have led to the modulation of the protein splicing process as a protein engineering tool. Novel strategies have been developed to use intein-catalyzed reactions for the production and manipulation of proteins and peptides. These new approaches have broken down the size limitation barrier of chemical synthetic methods and are less technically demanding. The purpose of this article is to describe how to use self-splicing inteins in protein semisynthesis and backbone cyclization. The first two sections of the article provide a brief review of the distinct chemical steps that underlie protein splicing and intein enabled technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.