Abstract

Abstract Water hydraulic systems have been around for a long time and captured the imagination of engineers some 2,500 years ago. Recently it has revived to become a powerful alternative of oil hydraulic system in areas where the environment and health are of great concern. The turning point came in early 90s when, with the advances in material and design, using tap water as hydraulic fluid was made possible. The axial piston motor is commonly applied to provide high torque and performance for the water hydraulic system. This paper focuses on the detection and assessment of the piston quality in the water hydraulic motor working on the principle of tap water hydraulic power systems. The different piston conditions were detected under the different pressures of the water hydraulic system. Possible piston cracks were simulated inside the water hydraulic motor. The water hydraulic motor was operated to capture unique vibration signals identifying faulty states as compared with the healthy state. The different sizes of the piston crack in water hydraulic motor were loaded to get feature values in the vibration signatures. Results show the amplitudes of the dominant frequency peaks in the spectrum of the vibration signal are effective to detect the different piston crack conditions under the different pressures of the water hydraulic system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call