Abstract

The recombinant kringle domain (UK1) of urokinase-type plasminogen activator (uPA) has been shown to possess anti-angiogenic activity in vitro and in vivo. It has also been found to inhibit in vivo malignant glioma growth. In contrast, direct interaction of the kringle domain of uPA and integrin alphavbeta3 has been reported to be involved in plasminogen and leukocyte activation by uPA. Since integrin alphavbeta3 is involved in tumor angiogenesis, we investigated whether integrin alphavbeta3 is involved in the inhibitory function of UK1 in angiogenesis, by examining its anti-migratory activity. In a modified Boyden chamber assay, the Pichia-expressed UK1 dose-dependently inhibited the VEGF-induced migration of human umbilical vein endothelial cells (HUVECs). However, in the absence of growth factor stimulation, soluble UK1 alone did not induce or inhibit HUVEC migration. In cell adhesion, immobilized UK1 promoted HUVEC adhesion and spreading which were compared to BSA. Pretreatment of the anti-alphavbeta3 integrin antibody, significantly inhibited HUVEC binding to immobilized UK1, whereas neither anti-alpha2beta1 nor anti-alpha5beta1 integrin antibody had any effect, although pre-treatment of the soluble UK1 showed no marked alteration of the binding level of anti-alphavbeta3 antibody to HUVECs in FACS analysis. In a modified Boyden chamber assay, the function blocking antibodies against integrins alphavbeta3, alpha2beta1 and alpha5beta1 did not completely prevent the inhibitory effect of UK1 in HUVEC migration. These results suggest that UK1 interacts with integrin alphavbeta3, but its anti-migratory activity on endothelial cells is not significantly mediated by integrin alphavbeta3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.