Abstract

The tightly regulated production of intracellular reactive oxygen species (ROS) participates in several biologic processes such as cellular growth, programmed cell death, senescence, and adhesion. It is increasingly evident that the same enzymatic processes that were originally linked to ROS generation during host defence or apoptosis execution are also involved in redox-mediated signal transduction. We investigated in murine NIH3T3 fibroblasts the contribution of a variety of redox-dependent events during signal transduction initiated by integrin engagement due to fibronectin stimulation and report that a mitochondrial ROS release occurs, strictly confined to the early phase of extracellular matrix (ECM) contact (10 min). Besides, 5-lipoxygenase (5-LOX) is engaged by integrin receptor ligation as another ROS source, contributing to the more-intense, second ROS burst (45 min), possibly orchestrating the spreading of cells in response to ECM contact. To define a potential mechanism for ROS signaling, we demonstrate that on integrin recruitment, the Src homology-2 domain-containing phosphatase 2 (SHP-2) undergoes a reversible oxidization/inactivation to which mitochondrial and 5-lipoxygenase ROS contribute differentially. In keeping with a key role of oxidants during integrin signaling, the inactivation of SHP-2 prevents the dephosphorylation and inactivation of SHP-2 substrates (p125FAK and SHPS-1), thus enabling the continued propagation of the signal arising by integrin engagement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.