Abstract

This study aims to elucidate the phosphorylated profile of periodontal ligament stem cells (PDLSCs) osteogenic differentiation, which contributes to the promotion of periodontium regeneration. PDLSCs cultured in the osteogenic induction medium for 14days were analyzed by proteomics and phosphoproteomics. Potential functions of phosphorylated differentially expressed proteins (DEPs) were annotated and enriched based on Gene Ontology (GO). Furtherly, overlapped DEPs were identified and conducted protein-protein interaction (PPI) network united with the top 20 up/downregulated phosphorylated DEPs. Hub phosphorylated DEPs were analyzed by Cytoscape, and the protein kinase phosphorylation network was predicted by iGPS. Proteomics identified 87 upregulated and 227 downregulated DEPs. Phosphoproteomics identified 460 upregulated and 393 downregulated phosphorylated DEPs, and they were primarily enriched in mitochondrial function and ion-channel related terms. Furthermore, 63 overlapped DEPs were recognized for more accurate predictions. Among the top 10 hub phosphorylated DEPs, only Integrin alpha-5 (ITGA5) expressed upregulated phosphorylation, and half of them belonged to extracellular matrix (ECM) proteins. In addition, numerous kinases corresponding to four interactive hub phosphorylated DEPs were predicted, including Collagen alpha-2(I) (COL1A2), Syndecan-1 (SDC1), Fibrillin-1 (FBN1), and ITGA5. Our findings established a basis for further elucidation of the phosphorylation of PDLSCs osteogenic differentiation, and COL1A2/SDC1/ITGA5/FBN1 phosphorylated network may dominate this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call