Abstract

BackgroundAcid stress is one of the most important environmental stresses that adversely affect the growth of lactic acid bacteria (LAB), such as Oenococcus oeni which was isolated from grape-berries and mainly used in wine fermentation. The aim of this paper is to comprehensively characterize the mechanisms of acid stress regulation in O. oeni and to provide a viable theoretical basis for breed and improvement of existing LAB. MethodFirst, six O. oeni mutants with acid-sensitive (strains b2, a1, c2) and acid-tolerant (strains b1, a3, c1) phenotypes were screened from three wild-type O. oeni, and then their genome (sequencing), transcriptome and metabolome (LC-MS/MS) were examined. ResultsA total of 459 genes were identified with one or more intragenic single nucleotide polymorphisms (SNPs) in these mutants, and were extensively involved in metabolism and cellular functions with a high mutation rates in purine (46%) and pyrimidine (48%) metabolic pathways. There were 210 mutated genes that cause significant changes in expression levels. In addition, 446 differentially accumulated metabolites were detected, and they were consistently detected at relatively high levels in the acid-tolerant O. oeni mutant. The levels of intracellular differentially expressed genes and differential metabolites changed with increasing culture time. ConclusionThe integrative pathways analysis showed that the intracellular response associated with acid regulation differed significantly between acid-sensitive and acid-tolerant O. oeni mutants, and also changed at different growth stages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call