Abstract

The continuous release of antibiotics into agroecosystems has raised concerns about the potential negative effects of antibiotic residues on crops. In this study, the toxicological effects of enrofloxacin (ENR) on wheat seedlings were analyzed using a combination of morpho-physiological, transcriptomic, proteomic, and metabolomic approaches. ENR inhibited the growth of wheat (Triticum aestivum L.) roots and induced oxidative stress. In particular, ENR downregulated the oxidative phosphorylation pathway, while it enhanced glycolysis and the tricarboxylic acid cycle, thereby regulating the balance of intracellular energy metabolism. In addition, sustained exposure to excessive reactive oxygen species (ROS) resulted in an increase in reduced glutathione (GSH), a slight decrease in ascorbic acid (AsA), and a significant decrease in the ratio of GSH to oxidized glutathione (GSSG), which imbalanced the AsA-GSH cycle. In addition, the resulting increase in abnormal proteins triggered ubiquitin-independent proteasomal degradation pathways. Further, an increase in abscisic acid (ABA) and a decrease in jasmonic acid (JA) and its derivatives alleviated the inhibitory effect of ENR on the growth of wheat roots. In conclusion, direct damage and signaling by ROS, hormonal regulation, a decrease in the GSH to GSSG ratio, and insufficient energy supply were identified as key factors for the significant inhibition of wheat root growth under ENR stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.