Abstract

Proteolysis-targeting chimeras (PROTACs), which selectively induce targeted protein degradation, represent an emerging drug discovery technology. Although numerous PROTACs have been reported, designing potent PROTACs still remains a great challenge, to some extent, due to insufficient structural data of Target-PROTAC-E3 ternary complexes. In this work, PROTAC-Model, an integrative computational method by combining the FRODOCK-based protocol and RosettaDock-based refinement, was developed to predict PROTAC-mediated ternary complex structures and tested on 14 cases. The quality of the models was evaluated using the criteria of the critical assessment of predicted interactions (CAPRI). Using the unbound structures, the FRODOCK-based protocol can generate the ternary complex structures with medium or high quality for 8 cases out of 14. With the refinement by RosettaDock, the cases with medium or high quality increase to 12. Compared with PRosettaC and the method developed by Drummond et al., PROTAC-Model shows better performance. In summary, PROTAC-Model should be useful for the rational design of PROTACs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.