Abstract

Proteolysis targeting chimeras (PROTACs) are bifunctional compounds that recruit an E3 ligase to a target protein to induce ubiquitination and degradation of the target. Rational optimization of PROTAC requires a structural model of the ternary complex. In the absence of an experimental structure, computational tools have emerged that attempt to predict PROTAC ternary complexes. Here, we systematically benchmark three commonly used tools: PRosettaC, MOE, and ICM. We find that these PROTAC-focused methods produce an array of ternary complex structures, including some that are observed experimentally, but also many that significantly deviate from the crystal structure. Molecular dynamics simulations show that PROTAC complexes may exist in a multiplicity of configurational states and question the use of experimentally observed structures as a reference for accurate predictions. The pioneering computational tools benchmarked here highlight the promises and challenges in the field and may be more valuable when guided by clear structural and biophysical data. The benchmarking data set that we provide may also be valuable for evaluating other and future computational tools for ternary complex modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.