Abstract

Acylation of proteins with fatty acids is important for the regulation of membrane association, trafficking, subcellular localization, and activity of many cellular proteins. While significant progress has been made in our understanding of the two major forms of protein acylation with fatty acids, N-myristoylation and S-palmitoylation, studies of the acylation of lysine residues, within proteins, with fatty acids have lagged behind. Demonstrated here is the use of integrative chemical biology approaches to examine human sirtuins as de-fatty-acid acylases in vitro and in cells. Photo-crosslinking chemistry is used to investigate enzymes which recognize fatty-acid acylated lysine. Human Sirt2 was identified as a robust lysine de-fatty-acid acylase in vitro. The results also show that Sirt2 can regulate the acylation of lysine residues, of proteins, with fatty acids within cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.