Abstract
Background: Ionizing radiation (IR) is a well-known inducer of cellular senescence and the senescence-associated secretory phenotype (SASP). SASP factors play dual roles in cancer, either promoting or inhibiting its development. This study investigates IR-induced SASP factors specifically secreted by renal cortical epithelial (RCE) cells and their role in promoting renal cell carcinoma (RCC) progression. Methods: Proteomic data from the SASP Atlas were analyzed to identify IR-induced factors unique to RCE cells, with subsequent evaluations performed at both the gene and protein levels. Thirty-seven proteins were identified as exclusively upregulated and secreted by senescent RCE cells. Gene expression analysis of these RCE-specific SASP factors was conducted using the Gene Expression database of Normal and Tumor tissues (GENT2) and The Cancer Genome Atlas (TCGA). To assess their prognostic relevance in RCC, the corresponding proteins were further analyzed using the Human Protein Atlas (HPA), emphasizing the relationship between SASP factor expression and RCC progression. Results: ALDH18A1 and ASPH emerged as key RCE-specific SASP factors with significant upregulation at both the gene and protein levels (Log2 ratio > 1.15, p < 0.05). These proteins are implicated in pro-cancer activities and are strongly associated with poor prognostic outcomes in RCC. Their critical roles in RCC progression underscore their potential as promising therapeutic targets for the prevention and treatment of the disease. Conclusions: This study provides novel insights into the role of IR-induced SASP in renal carcinogenesis, marking the first identification of ALDH18A1 and ASPH as specific secreted proteins associated with tumor progression in RCC. This study suggests that ALDH18A1 and ASPH hold promise as early biomarkers for RCC and as therapeutic targets for disease prevention and treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have