Abstract

Shikimate dehydrogenase (HpSDH) (EC 1.1.1.25) is a key enzyme in the shikimate pathway of Helicobacter pylori (H. pylori), which catalyzes the NADPH-dependent reversible reduction of 3-dehydroshikimate to shikimate. Targeting HpSDH has been recognized as an attractive therapeutic strategy against H. pylori infection. Here, the catalytic active site in the crystal structure of HpSDH in complex with its substrate NADPH and product shikimate was examined in detail; the site can be divided into three spatially separated subpockets that separately correspond to the binding regions of shikimate, NADPH dihydronicotinamide moiety, and NADPH adenine moiety. Subsequently, a cascading protocol that integrated virtual screening and antibacterial test was performed against a biogenic compound library to identify biologically active, subpocket-specific inhibitors. Consequently, five, eight, and six promising compounds for, respectively, subpockets 1, 2, and 3 were selected from the top-100 docking-ranked hits, from which 11 compounds were determined to have high or moderate antibacterial potencies against two reference H. pylori strains, with MIC range between 8 and 93μg/mL. It is found that the HpSDH active site prefers to accommodate amphipathic and polar inhibitors that consist of an aromatic core as well as a number of oxygen-rich polar/charged substituents such as hydroxyl, carbonyl, and carboxyl groups. Subpockets 1- and 2-specific inhibitors exhibit a generally higher activity than subpocket 3-specific inhibitors. Molecular dynamics simulations revealed an intense nonbonded network of hydrogen bonds, π-π stacking, and van der Waals contacts at the tightly packed complex interfaces of active-site subpockets with their cognate inhibitors, conferring strong stability and specificity to these complex systems. Binding energetic analysis demonstrated that the identified potent inhibitors can target their cognate subpockets with an effective selectivity over noncognate ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.