Abstract

BackgroundHelicobacter pylori is known to be a gastric pathogen of humans. Eradication regimens for H. pylori infection have some side effects, compliance problems, relapses, and antibiotic resistance. Therefore, the need for alternative therapies for H. pylori infections is of special interest. We have previously shown that polyphenols from almond skins are active against a range of food-borne pathogens. The aim of this study was to evaluate the antibacterial effects of natural almond skins before and after simulated human digestion and the pure flavonoid compounds epicatechin, naringenin and protocatechuic acid against H. pylori.ResultsH. pylori strains were isolated from gastric biopsy samples following standard microbiology procedures. Also, cagA and vacA genes were identified using PCR. Susceptibility studies on 34 strains of H. pylori, including two reference strains (ATCC 43504, ATCC 49503), were performed by the standard agar dilution method.Natural almond skin was the most effective compound against H. pylori (MIC range, 64 to 128 μg/ml), followed by natural skin post gastric digestion (MIC range, 128 to 512 μg/ml), and natural almond skin post gastric plus duodenal digestion (MIC range, 256 to 512 μg/ml). Amongst the pure flavonoid compounds, protocatechuic acid showed the greatest activity (MIC range, 128 to 512 μg/ml) against H. pylori strains.ConclusionsPolyphenols from almond skins were effective in vitro against H. pylori, irrespective of genotype status and could therefore be used in combination with antibiotics as a novel strategy for antibiotic resistance.

Highlights

  • Helicobacter pylori is known to be a gastric pathogen of humans

  • The aim of the present study was to investigate the antimicrobial properties of natural almond skins before and after simulated human digestion in the upper GI tract and the pure flavonoid compounds epicatechin, naringenin and protocatechuic acid against H. pylori strains isolated from gastric biopsies of subjects attending an outpatient clinic in Southern Italy

  • To type the H. pylori strains isolated from the patients examined in this study, we amplified by PCR different alleles of the genes of the two major virulence factors of Natural almond skins (NS) G + D

Read more

Summary

Introduction

Helicobacter pylori is known to be a gastric pathogen of humans. It is known to be a gastric pathogen of humans associated with chronic gastritis, peptic ulcers, atrophic gastritis, intestinal metaplasia and lymphoma or cancer development [1,2]. Amongst the different genetic determinants involved in H. pylori virulence are the cytotoxin-associated gene (cagA) and the vacuolating cytotoxin gene (vacA). VacA, which is present in all H. pylori strains, contains at least two variable parts relevant to virulence [5]. CagA, which is not present in every H. pylori strain [7], is a marker for a pathogenicity island (PAI) [8] associated with more severe clinical outcomes [9]. A strong association between cagA and vacA signal sequence type s1 has been reported [5]. Strains carrying s1 m1 mosaic combination secrete vacuolating cytotoxin in contrast to those with s2 m2 activity [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call