Abstract
In contrast with the soliton equations, the evolution of the eigenfunctions in the Lax representation of soliton equation with self-consistent sources (SESCS) possesses singularity. We present a general method to treat the singularity to determine the evolution of scattering data. The AKNS hierarchy with self-consistent sources, the MKdV hierarchy with self-consistent sources, the nonlinear Schrödinger equation hierarchy with self-consistent sources, the Kaup–Newell hierarchy with self-consistent sources and the derivative nonlinear Schrödinger equation hierarchy with self-consistent sources are integrated directly by using the inverse scattering method. The N soliton solutions for some SESCS are presented. It is shown that the insertion of a source may cause the variation of the velocity of soliton. This approach can be applied to all other (1+1)-dimensional soliton hierarchies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have