Abstract
During the process of crown gall tumorigenesis, Agrobacterium tumefaciens transfers part of the tumor-inducing (Ti) plasmid, the T-DNA, to a plant cell where it eventually becomes stably integrated into the plant genome. Directly repeated DNA sequences, called T-DNA borders, define the left and the right ends of the T-DNA. The T-DNA can be physically separated from the remainder of the Ti-plasmid, creating a 'binary vector' system; this system is frequently used to generate transgenic plants. Scientists initially thought that only those sequences located between T-DNA left and right borders transferred to the plant. More recently, however, several reports have appeared describing the integration of the non-T-DNA binary vector 'backbone' sequences into the genome of transgenic plants. In order to investigate this phenomenon, we constructed T-DNA binary vectors containing a nos-nptll gene within the T-DNA and a mas2'-gusA (beta-glucuronidase) gene outside the T-DNA borders. We regenerated kanamycin-resistant transgenic tobacco plants and analyzed these plants for the expression of the vector-localized gusA gene and for the presence of binary vector backbone sequences. Approximately one-fifth of the plants expressed detectable GUS activity. PCR analysis indicated that approximately 75% of the plants contained the gusA gene. Southern blot analysis indicated that the vector backbone sequences could integrate into the tobacco genome linked either to the left or to the right T-DNA border. The vector backbone sequences could also integrate into the plant genome independently of (unlinked to) the T-DNA. Although we could readily detect T-strands containing the T-DNA within the bacterium, we could not detect T-strands containing only the vector backbone sequences or these vector sequences linked to the T-DNA.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have