Abstract

AbstractThis research is focused on the analysis of the sequence stratigraphic units of F3 Block, within a wave‐dominated delta of Plio–Pleistocene age. Three wells of F3 block and a 3D seismic data, are utilized in this research. The conventional techniques of 3D seismic interpretation were utilized to mark the 11 surfaces on the seismic section. Integration of seismic sequence stratigraphic interpretation, using well logs, and subsequent 3D geostatistical modeling, using seismic data, aided to evaluate the shallow hydrocarbon traps. The resulting models were obtained using System Tract and Facies models, which were generated by using sequential stimulation method and their variograms made by spherical method, moreover, these models are validated via histograms. The CDF curve generated from upscaling of well logs using geometric method, shows a good relation with less percentage of errors (1 to 2 for Facies and 3 to 4 for System Tract models) between upscaled and raw data that complements the resulted models. These approaches help us to delineate the best possible reservoir, lateral extent of system tracts (LST and/or HST) in the respective surface, and distribution of sand and shale in the delta. The clinoform break points alteration observed on seismic sections, also validates the sequence stratigraphic interpretation. The GR log‐based Facies model and sequence stratigraphy‐based System Tract model of SU‐04‐2 showed the reservoir characteristics, presence of sand bodies and majorly LST, respectively, mainly adjacent to the main fault of the studied area. Moreover, on the seismic section, SU‐04‐2 exhibits the presence of gas pockets at the same location that also complements the generated Facies and System Tract models. The generated models can be utilized for any similar kind of study and for the further research in the F3 block reservoir characterization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.