Abstract

SummaryIn perceptual decision-making, prior knowledge of action outcomes is essential, especially when sensory inputs are insufficient for proper choices. Signal detection theory (SDT) shows that optimal choice bias depends not only on the prior but also the sensory uncertainty; however, it is unclear how animals integrate sensory inputs with various uncertainties and reward expectations to optimize choices. We developed a tone-frequency discrimination task for head-fixed mice in which we randomly presented either a long or short sound stimulus and biased the choice outcomes. The choice was less accurate and more biased toward the large-reward side in short- than in long-stimulus trials. Analysis with SDT found that mice did not use a separate, optimal choice threshold in different sound durations. Instead, mice updated one threshold for short and long stimuli with a simple reinforcement-learning rule. Our task in head-fixed mice helps understanding how the brain integrates sensory inputs and prior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.