Abstract

The mechanisms that enable humans to evaluate their confidence across a range of different decisions remain poorly understood. To bridge this gap in understanding, we used computational modelling to investigate the processes that underlie confidence judgements for perceptual decisions and the extent to which these computations are the same in the visual and auditory modalities. Participants completed two versions of a categorisation task with visual or auditory stimuli and made confidence judgements about their category decisions. In each modality, we varied both evidence strength, (i.e., the strength of the evidence for a particular category) and sensory uncertainty (i.e., the intensity of the sensory signal). We evaluated several classes of computational models which formalise the mapping of evidence strength and sensory uncertainty to confidence in different ways: 1) unscaled evidence strength models, 2) scaled evidence strength models, and 3) Bayesian models. Our model comparison results showed that across tasks and modalities, participants take evidence strength and sensory uncertainty into account in a way that is consistent with the scaled evidence strength class. Notably, the Bayesian class provided a relatively poor account of the data across modalities, particularly in the more complex categorisation task. Our findings suggest that a common process is used for evaluating confidence in perceptual decisions across domains, but that the parameter settings governing the process are tuned differently in each modality. Overall, our results highlight the impact of sensory uncertainty on confidence and the unity of metacognitive processing across sensory modalities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call