Abstract

Copper is required for the transformation of global energy systems, and its production is intensive in water and energy. Several studies have investigated the design of renewable energy systems for copper production, aiming at reducing its environmental footprint. Here, we present the first integrated design for desalinated water and energy supply that considers all forms of energy required in the copper production process. For this, we develop an optimization model for planning integrated multi-vector energy and water systems. The model includes -for the first time in an energy system planning model- a concept for integrated pumped-hydro storage using sweater and reverse osmosis desalination. Our results show that water-energy systems for copper production based exclusively on renewables can today achieve costs as low as those of conventional fossil-based systems, when integrating multi-vector planning and seawater pumped-hydro storage. For a case study in Chile and in fully renewable scenarios, the specific cost of supplying energy and desalinated water decreases from 520–670 € per ton of copper at current costs to 330–360 by 2050. By 2030, using seawater pumped-hydro storage makes a fully renewable, multi-energy scenario the least-cost alternative. Such an integrated system is an enabler for reducing the environmental footprint that copper brings into the global energy transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call