Abstract
For those movements that are directed toward objects located in extrapersonal space, it is necessary that visual inputs are first remapped from a retinal coordinate system to a body-centered one. The posterior parietal cortex (PPC) most likely integrates retinal and extraretinal information to determine the egocentric distance of an object located in three-dimensional (3-D) space. This determination requires both a retinal disparity signal and a parallel estimate of the fixation distance. We recorded from the lateral intraparietal area (LIP) to see if single neurons respond to both vergence angle and retinal disparity and if these two signals are integrated to encode egocentric distance. Monkeys were trained to make saccades to real targets in 3-D space. When both fixation distance and disparity of visual stimuli were varied, the disparity tuning of individual neurons display a fixation-distance modulation. We propose that the observed modulation contributes to a spatial coding domain intermediate between retinal and egocentric because the disparity tuning shifts in a systematic way with changes in fixation distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.