Abstract

Triple-negative breast cancer is a malignant cancer type with a high risk of early recurrence and distant metastasis. Unlike other breast cancers, triple-negative breast cancer is lack of targetable receptors and, therefore, patients largely receive systemic chemotherapy. However, inevitable adverse effects and acquired drug resistance severely constrain the therapeutic outcome. Here we tailor-designed a porphyrin-based micelle that was self-assembled from a hybrid amphiphilic polymer comprising polyethylene glycol, poly (d, l-lactide-co-glycolide) and porphyrin. The bilayer micelles can be simultaneously loaded with two chemotherapeutic drugs with synergistic cytotoxicity and distinct physiochemical properties, forming a uniform and spherical nanostructure. The drug-loaded micelles showed a tendency to accumulate in the tumor and can be internalized by tumor cells for drug release in acidic organelles. Under near-infrared laser irradiation, high density of self-quenched porphyrins in the hydrophobic layer absorbed light efficiently and converted into an excited state, leading to the release of sufficient heat for photothermal therapy. The integration of localized photothermal effect and synergistic chemotherapy conferred great chemosensitivity to cancer cells and achieved tumor regression using about 1/10 of traditional drug dosage. As a result, chemotherapy-associated adverse effects were successfully avoided. Our present study established a novel porphyrin-based nanoplatform with photothermal activity and expanded drug loading capacity, providing new opportunities for challenging conventional chemotherapy and fighting against stubborn triple-negative breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call