Abstract

Bioorthogonal catalysis provides a powerful tool to perform non-natural chemical reactions in living systems to dissect complex intracellular processes. Its potency to precisely regulate cellular function, however, is limited by the lack of bioorthogonal catalysts with cell selectivity. Herein, we report that palladium nanoparticles deposited on metal-organic frameworks, Pd@UiO-66, are highly efficient for intracellular bioorthogonal catalysis. In addition, introducing a cancer cell-targeting aptamer, AS1411, onto Pd@UiO-66 enables a threefold enhancement of catalysis efficiency in cancer cells. Moreover, AS1411@Pd@UiO-66 is effective in activating chemically caged 4-hydroxytamoxifen to regulate the activity of a protein destabilizing domain, ER50, and therefore protein function selectively in cancer cells. We show that the control over the activity of a bacterial effector, OspF, using AS1411@Pd@UiO-66 inactivates mitogen-activated protein kinase (MAPK) signaling of cancer cells to selectively prohibit tumor cell growth. We believe that the strategy developed herein for cell-selective bioorthogonal catalysis can expand the chemical biology toolbox for spatiotemporal control of protein function for advanced therapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.