Abstract

The optimal integration of distributed solar photovoltaic (DSP) is a transformative engineering method that is key in contributing to a sustainable and resilient energy future, especially when countries seek to increase the proportion of renewables in their energy mix to reduce carbon emissions. This paper presents a power flow-based approach that makes use of Newton Raphson's method in the ETAP tool to integrate multiple DSPs into both the existing and expanded Freetown distribution networks. The study determined the network's hosting capacities and optimal points of injection for the reduction of active power loss and improvement of bus voltage profiles. The study showed that the existing Freetown distribution network had a hosting capacity of 34.6 MW with an active power loss reduction of 0.967 MW while the expanded Freetown distribution network had a hosting capacity of 59.57 MW with an active power loss reduction of 5.12 MW. Before the injection of the DSPs into both networks, most of the bus voltages were not within acceptable limits. However, with the intervention of the injected DSPs, bus voltages considerably improve. The study showed that the expanded Freetown distribution network is better for DSPs integration compared to the existing Freetown distribution network. To evaluate the impacts of the injected DSPs and to validate the model used, four network scenarios were considered. The study used an analytical approach, considering future load growth and an evolving grid to integrate DSPs for long-term planning. The study will inform policymakers, utilities, etc., about the potential of integrating DSPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call