Abstract

For co-firing of MnZn-ferrite tapes and LTCC dielectric tapes, the sintering shrinkage curves and the coefficient of thermal expansion of ferrite and dielectric tapes were matched. Highly densified embedded ferrite without any cracks could be manufactured by co-firing at 900 °C in nitrogen atmosphere. However, the permeability of MnZn-ferrite co-fired between dielectric tapes is significantly reduced (μ´=100) compared to that of the separately sintered ferrite (μ´=500). Changes in the phase stability and microstructure of MnZn-ferrite were investigated to explain the permeability reduction in the embedded ferrite. It is supposed that early densification of the dielectric tapes on the top and bottom of the ferrite layer prevent the gas exchange during sintering which is necessary for (Mn,Zn)Fe2O4 spinel formation. As a result, high amount of Fe2O3 secondary phase and a Mn-rich spinel phase with low permeability remain in the embedded ferrite layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.