Abstract
This work describes the integration of mid-infrared (MIR) silicon photonics with PDMS microfluidics to perform absorption spectroscopy of IPA-water solutions. The MIR spectral region contains strong absorption bands for many molecules, and photonic devices operating in the MIR can be used in many sensing applications. In this work a preliminary demonstration of a silicon-on-insulator (SOI) device is carried out in which the transmission spectra of different concentrations of water-IPA solutions are measured at wavelengths between 3.725 μm and 3.888 μm. A PDMS microfluidic channel is integrated with the waveguides in order to improve the repeatability of sample handing, reduce reagent volumes and prevent evaporation of the analyte. A microfluidic channel with 3000 x 100 μm cross-section and 30 mm length is bonded to a SOI chip comprising 500 nm thick rib waveguides and a 2 μm thick SiO2top cladding isolating the waveguide mode from the analyte. Trenches were patterned into the SiO2 cladding to create sensing windows of varying lengths (10 μm to 3mm) along different waveguides. The devices were used to detect an expected IPA absorption peak at 3.77 μm, and concentration as low as 3% IPA in water (by volume) was detected. Further work will focus on increasing the sensitivity of the measurement by using increased interaction lengths, reduction of noise and instability, and on the detection of drugs using transmission measurements over a broader wavelength range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.