Abstract
Exploration and implementation of silicon (Si) photonics has surged in recent years since both photonic component performance and photonic integration complexity have considerably improved. It supports a wide range of datacom and telecom applications, as well as sensors, including light detection and ranging, gyroscopes, biosensors, and spectrometers. The advantages of low-loss Si WGs with compact size and excellent uniformity, resulting from the high quality and maturity of the Si complementary metal oxide semiconductor (CMOS) environment, are major drivers for using Si in photonics. Moreover, it has a high refractive index and a reasonably large mid-infrared (MIR) transparency window, up to roughly 7 μm wavelength, making it beneficial as a passive mid-IR optical material. Several gases and compounds with high absorption properties in the MIR spectral region are of prodigious curiosity for industrial, medicinal, and environmental applications. In comparison to current bulky systems, the implementation of Si photonics devices in this wavelength range might allow inexpensive and small optical sensing devices with greater sensitivity (S), power usage, and mobility. In this review, recent advances in Si integrated photonic sensors working in both near-infrared (NIR) and MIR wavelength ranges are discussed. We believe that this paper will be valuable for the scientific community working on Si photonic sensing devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.