Abstract
This paper investigates a comparative analysis of technology computer-aided design (TCAD) versus machine learning (ML) technique for ferroelectric-based substrate metal oxide semiconductor field effect transistor (FE-MOSFET), which shows the low power energy storage device and ML algorithms reduce the time or overall process. The simulations carried out through TCAD require approximately 44–46 days, encompassing variations in input parameters like gate work function ([Formula: see text]), doping concentration ([Formula: see text]), channel doping ([Formula: see text]), gate-to-source voltage ([Formula: see text]), and drain-to-source voltage ([Formula: see text]). In order to lower the computing cost of numerical TCAD device simulations, a new ML-assisted technique is provided for studying the FE-MOSFET. To reduce the runtime of physics-based TCAD by about 10–12[Formula: see text]h for each iteration, a ML-based prediction alternative is created. The proposed combination of TCAD device simulation and ML algorithms is the future of the next generation of electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.