Abstract

Many motion-sensitive tangential cells of the lobula plate in blowflies are well described with respect to their visual response properties and the connectivity among them. They have large and complex receptive fields with different preferred directions in different parts of their receptive fields matching the optic flow that occurs during various flight maneuvers. However, much less is known about how tangential cells connect to postsynaptic neurons descending to the motor circuits in the thoracic ganglion and how optic flow is represented in these downstream neurons. Here we describe the physiology and the connectivity of a prominent descending neuron called DNOVS1 (for descending neurons of the ocellar and vertical system). We find that DNOVS1 is electrically coupled to a subset of vertical system cells. The specific wiring leads to a preference of DNOVS1 for rotational flow fields around a particular body axis. In addition, DNOVS1 receives input from interneurons connected to the ocelli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call