Abstract
Abstract Urban–coastal circulations affect urban weather, dispersion and transport of pollutants and contaminants, and climate. Proper characterization and prediction of thermodynamic and dynamic processes in such environments are warranted. A new generation of observation and modeling systems is enabling unprecedented characterization of the three-dimensionality of the urban environment, including morphological parameters. Urban areas of Houston, Texas, are classified according to lidar-measured building heights and assigned typical urban land surface parameters appropriate to each classification. The lidar data were degraded from 1 m to the model resolution (1 km) with the goal of evaluating the impact of degraded resolution urban canopy parameters (UCPs) and three-dimensionality on the coastal–urban mesoscale circulations in comparison to typical two-dimensional urban slab approaches. The study revealed complex interactions between the sea breeze and urban heat island and offers a novel diagnostic tool, the bulk Richardson shear number, for identifying shallow mesoscale circulation. Using the Advanced Research Weather Research and Forecasting model (ARW-WRF) coupled to an atmosphere–land surface–urban canopy model, the authors simulated a theoretical sea-breeze day and confirmed that while coastal morphology can itself lead to complex sea-breeze front structures, including preferred areas of vertical motion, the urban environment can have an impact on the evolution of the sea-breeze mesoscale boundary. The inclusion of lidar-derived UCPs, even at degraded resolution, in the model’s land surface representation can lead to significant differences in patterns of skin surface temperature, convergence, and vertical motion, which have implications for many aspects of urban weather.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.