Abstract

AbstractHeterometallic lanthanide–transition‐metal (4f–3d) clusters with well‐defined crystal structures integrate multiple metal centers and provide a platform for achieving synergistic catalytic effects. Herein, we present a strategy for enhanced hydrogen evolution by loading atomically precise 4f–3d clusters Ln52Ni56 on a CdS photoabsorber surface. Interestingly, some Ni2+ ions in the clusters Ln52Ni56 were exchanged by the Cd2+ to form Ln52Ni56−xCdx/CdS composites. Photocatalytic studies show that the efficient synergistic multipath charge separation and transfer from CdS to the Eu52Ni56−xCdx cluster enable high visible‐light‐driven hydrogen evolution at 25 353 μmol h−1 g−1. This work provides the strategy to design highly active photocatalytic hydrogen evolution catalysts by assembling heterometallic 4f–3d clusters on semiconductor materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.