Abstract
Heterometallic lanthanide-transition-metal (4f-3d) clusters with well-defined crystal structures integrate multiple metal centers and provide a platform for achieving synergistic catalytic effects. Herein, we present a strategy for enhanced hydrogen evolution by loading atomically precise 4f-3d clusters Ln52 Ni56 on a CdS photoabsorber surface. Interestingly, some Ni2+ ions in the clusters Ln52 Ni56 were exchanged by the Cd2+ to form Ln52 Ni56-x Cdx /CdS composites. Photocatalytic studies show that the efficient synergistic multipath charge separation and transfer from CdS to the Eu52 Ni56-x Cdx cluster enable high visible-light-driven hydrogen evolution at 25 353 μmol h-1 g-1 . This work provides the strategy to design highly active photocatalytic hydrogen evolution catalysts by assembling heterometallic 4f-3d clusters on semiconductor materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.