Abstract
Superconducting devices operating at liquid nitrogen LN2 temperature are increasingly used in power engineering. This paper describes a method to calculate the spatial distribution of temperature rise due to high current densities in electrical joints, which result in excessive transient and steady state heat generation. In order to compute heat conduction between and along adjacent solid domains, a thermal network method using analogies between thermal and electrical network is convenient. Sufficiently simple correlations for convective heat transfer coefficients are required. The given calculative approaches and principles were selected, evaluated and integrated into a thermal model. This model was approved by experimental investigations using high currents and transient cooling processes and implemented into PSpice simulation software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.