Abstract

The microfluidic technology provides an ideal platform for in situ screening of enzyme inhibitors and activators from natural products. This work described a surface-modified ITO glass-PDMS hybrid microfluidic chip for evaluating thrombin interaction with its potential inhibitors by fluorescence imaging and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). The fluorescence-labeled substrate was immobilized on a conductive ITO glass slide coated with gold nanoparticles/thiol-β-cyclodextrin modified TiO2 nanowires (Au-β-CD@TiO2 NWs) via Au–S bonds. A PDMS microchannel plate was placed on top of the modified ITO slide. The premixed solutions of thrombin and candidate thrombin inhibitors were infused into the microchannels to form a microreactor environment. The enzymatic reaction was rapidly monitored by fluorescence microscopy, and MALDI MS was used to validate and quantify the enzymatic hydrolysate of thrombin to determine the enzyme kinetic process and inhibitory activities of selected flavonoids. The fluorescence and MALDI MS results showed that luteolin, cynaroside, and baicalin have good thrombin inhibitory activity and their half-maximal inhibitory concentrations (IC50) were below 30 μM. The integration of fluorescence imaging and MALDI MSI for in situ monitoring and quantifying the enzymatic reaction in a microfluidic chip is capable of rapid and accurate screening of thrombin inhibitors from natural products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.