Abstract

The development of in situ methods for the analysis and visualization of enzyme activity is of paramount importance in drug discovery, research, and development. In this work, the functionalized and array patterned indium tin oxide (ITO) glass slides were fabricated by non-covalent immobilization of amphipathic phospholipid-tagged peptides encompassing the thrombin cleavage site on steric acid-modified ITO slides. The fabricated peptide arrays provide 60 spots per slide, and are compatible with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) measurement, free matrix peak interference, and tolerance to repeated aqueous washing. The peptide arrays were used for the investigation of thrombin activity and screening for its potential inhibitors. The thrombin activity and its Michaelis-Menten constant (Km) for immobilized peptide substrate was determined using developed MALDI MS peptide array. To investigate the applicability and effectiveness of peptide arrays, the anti-thrombin activity of grape seed proanthocyanidins with different degrees of polymerization (DP) was monitored and visualized. MALDI MS imaging results showed that the fractions of proanthocyanidins with the mean DP of 4.61–6.82 had good thrombin inhibitory activity and their half-maximal inhibitory concentration (IC50) were below 10 μg/mL. Therefore, the developed peptide array is a reliable platform for the discovery of natural thrombin inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.